We're about to start construction on our new home. I'd like to design the lighting, and, inspired by threads like http://www.storageforum.net/forum/showthread.php/7919-Wiring-a-house-for-LED and the fantastic input of those like jtr, I'd like to run some numbers by you pros and get any feedback you may have.
First some assumptions: we'll assume that I want LEDs. In particular, we'll assume that I want a “purpose-built LED” solution, as jtr has referred to it, for a variety of reasons, including the desire to run things optimally in order to maximize efficiencies. We'll assume that I have an acceptable (to my wife and I) physical design, which involves strips in dropped crown-molding (“mini-soffit”)-like configurations, run around the perimeters of rooms (or portions thereof) where LEDs are bounced off the ceiling (indirect). There are a couple of variants, and, in the kitchen, a direct down-lighting design prevails, but one that will still take the form of “strip”. Putting those assumptions together, one option for component LEDs are the Cree XM-L's that jtr mentioned, that were newly released in 2010 as he was writing, and have now been around a couple of years. Now the picture is becoming clearer: I'm interested in buying some aluminum plates (or other substrate / cooling-configuration) and spacing the emmitters on them myself, as the given room/application dictates. We'll assume that I have some electrical experience, but no real LED experience. We'll assume that we're not the pickiest people when it comes to temperature / color, but I'm considering some of jtr's advice about throwing in a color here and there to help with the color (though I'm not sure, as bright as each XM-L is, if that's still a great option, as the spacing may be greater than with lower-power LEDs and the color variations may become visible, but more on details later). Finally, we'll assume that I'm _not_ interested in dimming. I will in some cases bank the lighting for 2 or maybe 3 brightness configurations, but that's it. However, there are some instance in which I'd like 3-way switching, so to speak, and I think I'd like to run the switching, if possible, with signal-wire, to the wall switches, which would be momentary switches of some sort (no state). More on this later.
I'd like to run things at 48V DC - just under the 50V threshold for obvious reasons, but high enough to minimize line loss if I need to take the DC any great distance. I'm open to transformer options and configurations, and, of course, have access to all the insides of the walls, can put boxes wherever I want, etc. Likewise, I'm confident that I can easily find physical housing for drivers. I know that if I use #12 Romex then my 5% drop distances for 4, 6, 8, 10 Amps are, respectively, 132, 90, 64, and 52 feet, which are all acceptable in my application. I will, of course, take distances and transformer locations into consideration when making final wiring choices. I'm not convinced that using a single transformer for the whole house's DC lighting is the best way to go, and I'm ok with having a few regional transformers, say, each on their own little 10 or 15-Amp circuits (A/C, from the panel to the tranformer at 120V), to provide the DC to a given, say, few-hundred square-foot region of the house.
For a given room / application I have an approximate lumen requirement, albeit, since I'm not the most familiar with lighting, my calculation is based on incandescent equivalencies. E.g., in one room, I'd like the equivalent of about 2 75-Watt incans for whole-room lighting. No work areas or anything. This example happens to be a bedroom, in which we'll have reading lights at the bed. So, that's about 2360lm. If the XM-Ls are 250lm at 1Amp (I'm not sure if that's exactly right, but approx.), I might need about 10 of them to do the job. Possibly 5 along one wall and 5 along another, spaced a couple feet apart would do it, right?
And, if I'm paying about 6.5-cents per kwh right now, and wanted to compare, then my 2x75-watt incandescents would cost me 10-cents a day, or $35.59 a year if run 10-hours a day. Roughly, at 100lm/watt, I guess I'd be running the LED equivalent at about 25 watts (compared to the 150-watt incandescents), which calculates out to 2-cents a day or $5.93 a year. I know, I'm leaving out the consumption of the drivers, but if constant-current drivers run about 96% efficiency, I'll just let it go for the calculation for now. If my house was over-simplistically scalable and the whole-house load was 15-times this, then we're looking at a $1.20/day or $444.90/year difference (savings). I see XM-Ls on ebay for $60/10pcs ($6/pc) (is this a decent price? I haven't looked at vendors yet). If my whole-house scenario was over-simplified and I decided that I needed about 150 of these little guys, that would come to $900. The power-supply(s), wiring, boxes, mounting, etc. might all add up to a couple thousand (very rough). So I'm looking at a few thousand, perhaps, not including labor and soffit-building, etc., which I intend to do. So the ROI would be about 6-10 years. Well, big error, of course: I'm assuming that a bunch of incandescents and conventional wiring would cost $0, but that would just reign the ROI in a little. And if my LEDs last 15 years, then I only have to replace them at under $1000, likely, in 15 years, and the ROI on that is 2 more years, for another 15 years of life, presumably. Again, assuming that incands were 0$. I can handle that. I'd net more than $2k in the first 15 years, and then neigh $7000 over the next 15 years.
About switches... in a couple of applications I'd like switches at each end of a room/hall. I don't like state switches, and I'm not fond of touch-switches. I'd like a mechanical momentary switch. I haven't looked hard for one yet, but will soon. Any advice on a switch? Any advice on how to deliver a switch signal to the driver (I'd prefer to signal post-transformer, I think, but perhaps there's reason to consider 120V switches, even if I go with a momentary switch, or possibly low-voltage switches that go to latching relays on the 120V circuit?). Do I need to breadboard my own solution, complete with debounce and whatnot? My electrical experience of this sort is quite rusty, so I'd love it if there was a prefab solution I could make use of here.
An aside: I do have plans for PV-solar someday, but it might be 150' from the house, so I have to figure out how to carry it up high-voltage/low-current, and in big wires, to reduce loss; I'm sure it's still easier to step down to 48-V than it is to transform A/C, so, when the time comes, I'd like to have a way to patch that source in directly (that is, from the batteries). I don't think this will be hard, but if I'm transforming in the wall somewhere, I have to keep in mind how to get the new source there in the place of the AC; I may be able to just use the existing romex to do it, and be fine, and just bypass the transformer there, possibly replacing it with step-down circuitry. This isn't the most important piece of the puzzle, just something I'd like to think ahead on a little bit.
Now for color (temperatures, CRIs, etc.) I have XLampXML_HVW.pdf, the poop sheet which characterizes their “cool”, “neutral”, and “warm” white options, and I can take some jargon-filled advice from other threads about what “good” color might be, and I can, as advised, order some stuff and see what it looks like before ordering the big bundle, but does anyone have any basic advice for this product in particular, to get me started. Devoid of any advice, I'd probably try an assortment, but would stick closer to the warm end of things than the cool end. I like incandescent color alright, and the photographer in me likes anything between white and warm for portraiture, but I really am fairly liberal here; not even the CF “green” bothers me as much as it does some people (I wouldn't shoot portraits under it, but I can live with it). Of course I don't want green hues, but, I'm thinking I might have a pretty easy job of choosing here; my design will reduce glare problems, and my lax color attitude might lead to happiness with anything in an acceptable spectrum. Color-crats have it harder in life, I'm sure.
And finally, cooling: I really like the idea of running some water in tubing to which the LEDs are mounted. I know copper would work best, but it's not practical or cost-effective. I know PEX is more insulative, but cold well water in PEX should still help deliver off the heat a bit, if I can figure out how to mount the things well. I have a couple of options for what to do with this water, but, for the sake of argument, just assume that it gets fed, thus pre-warmed, into our water-heating system. So, an assumption is that maximum efficiency occurs when light usage and water demand are in concert, or if water-demand is somehow constant. Since we're doing in-floor radiant, demand may be somewhat constant, if we go open-loop. But most likely we'll run closed-loops through heat-exchangers. In this case, we'll have to rely on the coincidence of water-demand and light-demand, but that may work out pretty well, actually. Any advice on doing something so unconventional would be greatly appreciated.
First some assumptions: we'll assume that I want LEDs. In particular, we'll assume that I want a “purpose-built LED” solution, as jtr has referred to it, for a variety of reasons, including the desire to run things optimally in order to maximize efficiencies. We'll assume that I have an acceptable (to my wife and I) physical design, which involves strips in dropped crown-molding (“mini-soffit”)-like configurations, run around the perimeters of rooms (or portions thereof) where LEDs are bounced off the ceiling (indirect). There are a couple of variants, and, in the kitchen, a direct down-lighting design prevails, but one that will still take the form of “strip”. Putting those assumptions together, one option for component LEDs are the Cree XM-L's that jtr mentioned, that were newly released in 2010 as he was writing, and have now been around a couple of years. Now the picture is becoming clearer: I'm interested in buying some aluminum plates (or other substrate / cooling-configuration) and spacing the emmitters on them myself, as the given room/application dictates. We'll assume that I have some electrical experience, but no real LED experience. We'll assume that we're not the pickiest people when it comes to temperature / color, but I'm considering some of jtr's advice about throwing in a color here and there to help with the color (though I'm not sure, as bright as each XM-L is, if that's still a great option, as the spacing may be greater than with lower-power LEDs and the color variations may become visible, but more on details later). Finally, we'll assume that I'm _not_ interested in dimming. I will in some cases bank the lighting for 2 or maybe 3 brightness configurations, but that's it. However, there are some instance in which I'd like 3-way switching, so to speak, and I think I'd like to run the switching, if possible, with signal-wire, to the wall switches, which would be momentary switches of some sort (no state). More on this later.
I'd like to run things at 48V DC - just under the 50V threshold for obvious reasons, but high enough to minimize line loss if I need to take the DC any great distance. I'm open to transformer options and configurations, and, of course, have access to all the insides of the walls, can put boxes wherever I want, etc. Likewise, I'm confident that I can easily find physical housing for drivers. I know that if I use #12 Romex then my 5% drop distances for 4, 6, 8, 10 Amps are, respectively, 132, 90, 64, and 52 feet, which are all acceptable in my application. I will, of course, take distances and transformer locations into consideration when making final wiring choices. I'm not convinced that using a single transformer for the whole house's DC lighting is the best way to go, and I'm ok with having a few regional transformers, say, each on their own little 10 or 15-Amp circuits (A/C, from the panel to the tranformer at 120V), to provide the DC to a given, say, few-hundred square-foot region of the house.
For a given room / application I have an approximate lumen requirement, albeit, since I'm not the most familiar with lighting, my calculation is based on incandescent equivalencies. E.g., in one room, I'd like the equivalent of about 2 75-Watt incans for whole-room lighting. No work areas or anything. This example happens to be a bedroom, in which we'll have reading lights at the bed. So, that's about 2360lm. If the XM-Ls are 250lm at 1Amp (I'm not sure if that's exactly right, but approx.), I might need about 10 of them to do the job. Possibly 5 along one wall and 5 along another, spaced a couple feet apart would do it, right?
And, if I'm paying about 6.5-cents per kwh right now, and wanted to compare, then my 2x75-watt incandescents would cost me 10-cents a day, or $35.59 a year if run 10-hours a day. Roughly, at 100lm/watt, I guess I'd be running the LED equivalent at about 25 watts (compared to the 150-watt incandescents), which calculates out to 2-cents a day or $5.93 a year. I know, I'm leaving out the consumption of the drivers, but if constant-current drivers run about 96% efficiency, I'll just let it go for the calculation for now. If my house was over-simplistically scalable and the whole-house load was 15-times this, then we're looking at a $1.20/day or $444.90/year difference (savings). I see XM-Ls on ebay for $60/10pcs ($6/pc) (is this a decent price? I haven't looked at vendors yet). If my whole-house scenario was over-simplified and I decided that I needed about 150 of these little guys, that would come to $900. The power-supply(s), wiring, boxes, mounting, etc. might all add up to a couple thousand (very rough). So I'm looking at a few thousand, perhaps, not including labor and soffit-building, etc., which I intend to do. So the ROI would be about 6-10 years. Well, big error, of course: I'm assuming that a bunch of incandescents and conventional wiring would cost $0, but that would just reign the ROI in a little. And if my LEDs last 15 years, then I only have to replace them at under $1000, likely, in 15 years, and the ROI on that is 2 more years, for another 15 years of life, presumably. Again, assuming that incands were 0$. I can handle that. I'd net more than $2k in the first 15 years, and then neigh $7000 over the next 15 years.
About switches... in a couple of applications I'd like switches at each end of a room/hall. I don't like state switches, and I'm not fond of touch-switches. I'd like a mechanical momentary switch. I haven't looked hard for one yet, but will soon. Any advice on a switch? Any advice on how to deliver a switch signal to the driver (I'd prefer to signal post-transformer, I think, but perhaps there's reason to consider 120V switches, even if I go with a momentary switch, or possibly low-voltage switches that go to latching relays on the 120V circuit?). Do I need to breadboard my own solution, complete with debounce and whatnot? My electrical experience of this sort is quite rusty, so I'd love it if there was a prefab solution I could make use of here.
An aside: I do have plans for PV-solar someday, but it might be 150' from the house, so I have to figure out how to carry it up high-voltage/low-current, and in big wires, to reduce loss; I'm sure it's still easier to step down to 48-V than it is to transform A/C, so, when the time comes, I'd like to have a way to patch that source in directly (that is, from the batteries). I don't think this will be hard, but if I'm transforming in the wall somewhere, I have to keep in mind how to get the new source there in the place of the AC; I may be able to just use the existing romex to do it, and be fine, and just bypass the transformer there, possibly replacing it with step-down circuitry. This isn't the most important piece of the puzzle, just something I'd like to think ahead on a little bit.
Now for color (temperatures, CRIs, etc.) I have XLampXML_HVW.pdf, the poop sheet which characterizes their “cool”, “neutral”, and “warm” white options, and I can take some jargon-filled advice from other threads about what “good” color might be, and I can, as advised, order some stuff and see what it looks like before ordering the big bundle, but does anyone have any basic advice for this product in particular, to get me started. Devoid of any advice, I'd probably try an assortment, but would stick closer to the warm end of things than the cool end. I like incandescent color alright, and the photographer in me likes anything between white and warm for portraiture, but I really am fairly liberal here; not even the CF “green” bothers me as much as it does some people (I wouldn't shoot portraits under it, but I can live with it). Of course I don't want green hues, but, I'm thinking I might have a pretty easy job of choosing here; my design will reduce glare problems, and my lax color attitude might lead to happiness with anything in an acceptable spectrum. Color-crats have it harder in life, I'm sure.
And finally, cooling: I really like the idea of running some water in tubing to which the LEDs are mounted. I know copper would work best, but it's not practical or cost-effective. I know PEX is more insulative, but cold well water in PEX should still help deliver off the heat a bit, if I can figure out how to mount the things well. I have a couple of options for what to do with this water, but, for the sake of argument, just assume that it gets fed, thus pre-warmed, into our water-heating system. So, an assumption is that maximum efficiency occurs when light usage and water demand are in concert, or if water-demand is somehow constant. Since we're doing in-floor radiant, demand may be somewhat constant, if we go open-loop. But most likely we'll run closed-loops through heat-exchangers. In this case, we'll have to rely on the coincidence of water-demand and light-demand, but that may work out pretty well, actually. Any advice on doing something so unconventional would be greatly appreciated.